
1

Interactive Ray TracingInteractive Ray Tracing

Steven Parker William Martin Peter-Pike Sloan
Peter Shirley Brian Smits Charles Hansen

Computer Science Department
University of Utah

Interactive Ray TracingInteractive Ray Tracing

• SGI Origin 2000
• 64 processors
• Display is only graphics hardware used

• Video recorded directly from screen
• 600 x 437 resolution

2

Why is this fast?Why is this fast?

• Ray tracing performs well on modern
processors

• For static scenes, runtime grows slower
than number of objects rendered

• Parallelism

What we didn’t doWhat we didn’t do

• Reuse of information (from previous
frames)

• Interpolation between pixels
• Explicitly optimized code (all C++)
• Complex load balancing
• Scan conversion (hardware or software)

3

Guiding principlesGuiding principles

• KISS programs are good
• Careful attention to data locality is

essential
• Careful attention to counting flops is not

essential

– Most things are re-computed instead of
stored

Serial EfficiencySerial Efficiency

• Judicious use of C++ features
• Memory locality
• Minimizing expensive operations (sqrt, divide)

• Approximately three hours of optimizing for
each hour of coding

4

Parallel EfficiencyParallel Efficiency

• Dynamic load balancing
• Use Origin fetch&op counter

• Straightforward implementation
• Not tuned to topology of underlying

architecture (bristled hypercube)

New Ray Tracing MentalityNew Ray Tracing Mentality

• How can one achieve important visual
cues without impacting interactivity?

• Soft shadows
• Directionally varying ambient term

5

6

Ambient LightingAmbient Lighting

Rich PrimitivesRich Primitives

• Ray tracing can accommodate very large
and complex data

• Adding complex primitives is just as easy
as in a batch ray tracer

7

Spline modelsSpline models

35 million spheres35 million spheres

8

Textured Volume DataTextured Volume Data

Maximum Maximum
Intensity Intensity
ProjectionProjection

9

PerformancePerformance

• Rendering of isosurfaces from visible
female CT dataset (900 Megabytes)

• More details of this technique in
Visualization ‘98 paper

10

0

5

10

15

20

Frame Number (time)

Fr
am

es
/se

co
nd

 (3
2

pr
oc

es
so

rs
)

0

32

64

96

128

0 32 64 96 128
Processors

Sp
ee

du
p

Ideal
Measured

11

Efficiency of Data AccessEfficiency of Data Access

For visible female:

L1 cache hits: 99.44%
L2 cache hits: 97.6%
Memory bandwidth: 2.1 MB/sec/processor

Teapot scene: 8 MB/sec/processor

Frameless RenderingFrameless Rendering

• Improves interactivity
• Lowers memory locality
• Relaxes synchronization

• Helpful if off by a factor of 5, but not by
a factor of 20

12

Interactive Ray TracerInteractive Ray Tracer

• Useful tool for interactively exploring
complex scenes on large machines

• Good research tool for prototyping
• Attention to memory system critical for

performance

Problems with current systemProblems with current system

• Some scenes and algorithms just too slow
• Preprocessing precludes dynamic scenes
• No Antialiasing
• Variable frame rate

13

Planned ImprovementsPlanned Improvements

• New API for scene graph ray tracing
• Dynamic efficiency structures that

amortize overhead cost
• Parallel front end for pixel reprojection
• 1000+ processor implementation

FuturismFuturism

• Good research tool now, but will it ever
play video games?

• Obviates many graphics processor
bottlenecks, but also introduces new ones

14

Future 1: Better HardwareFuture 1: Better Hardware

• Moore’s Law-- in ten years CPUs will be
100x faster with 10x memory bandwidth

• Current system uses only 10% of
memory bandwidth

• Will likely still perform well in ten years

• Custom hardware?

Future 2: More CPUsFuture 2: More CPUs

• Los Alamos cluster has 48 128CPU
O2Ks with approximately 125x the raw
power of our current machine

• Bandwidth to frame buffer would allow
40 uncompressed HDTV images per
second to be ray traced

• Not yet practical for the desktop

15

ASCI
Blue Mountain

Future 3: Better reuse of Future 3: Better reuse of
computationcomputation

• Pixels can be reprojected between frames
• New pixels are traced as needed

16

Video
Interactive Rendering using the Render Cache

Bruce Walter (iMAGIS)
George Drettakis (iMAGIS)

Steven Parker (Univ. of Utah)

Future 4: HybridFuture 4: Hybrid

• Better CPU’s - just wait
• More CPU’s - just get more money
• More intelligence - gotta work

17

EvangelismEvangelism

• This isn’t hard
• This is fun

– A good prototyping tool
• Necessary hardware is becoming

affordable for research institutions

OverviewOverview

• Isosurfacing is performed implicitly at
every pixel

• Maps well onto modern architectures
• Interactive for some datasets on some

machines

18

VideoVideo

• SGI Origin 2000 using 50 processors
• 512 x 512 image
• 512 x 512 x 1734 voxels (900

Megabytes)
Visible Female data from the National
Library of Medicine Visible Human
Project

OutlineOutline

I. Ray tracing isosurfaces

II. Achieving interactivity

19

Isosurfacing Isosurfacing for Analytic for Analytic
FunctionsFunctions

• f(x,y,z)=0
• ray tracing via root finding (e.g. Kalra and

Barr ‘89)

• explicit polygonalization (e.g. Stander and
Hart ‘97)

TrilinearTrilinear Cells are EasierCells are Easier

111

110

101

100

011

010

001

000

)1(
)1(

)1()1(
)1(

)1()1(
)1()1(

)1()1()1(

ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ

wvu
wvu
wvu
wvu
wvu
wvu
wvu
wvu

+−
+−
+−−
+−
+−−
+−−
+−−−),,(ρ wvu =

20

Isosurfacing Isosurfacing for a for a TrilinearTrilinear CellCell

Marching Cubes
Lorensen and Cline

(‘87)
Wyvill and Wyvill (‘86)

Why Not Always Use Marching Why Not Always Use Marching
Cubes?Cubes?

Marching cubes can generate millions of
polygons
– Reduce by decimation (e.g. Shekhar et. al

‘96)
– Reduce by culling (e.g. Livnat and Hansen

‘98)

21

Isosurfacing Isosurfacing for a for a TrilinearTrilinear CellCell

10

10

10

twww
tvvv
tuuu

+=
+=
+=

ray:

111

110

101

100

011

010

001

000

)1(
)1(

)1()1(
)1(

)1()1(
)1()1(

)1()1()1(

ρ
ρ
ρ
ρ
ρ
ρ
ρ
ρ

wvu
wvu
wvu
wvu
wvu
wvu
wvu
wvu

+−
+−
+−−
+−
+−−
+−−
+−−−),,(ρ wvu =

cell:

023 =+++ DCtBtAt
ray intersects cell where:

Isosurfacing Isosurfacing for a Piecewise for a Piecewise
Linear CellLinear Cell

marching cubes ray tracing

22

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

23

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

24

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

25

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

26

Effects of Direct Cubic Effects of Direct Cubic
Solution Solution

Isosurfacing Isosurfacing for a grid of cellsfor a grid of cells

ray

27

Previous Ray Tracing for Previous Ray Tracing for
IsosurfacesIsosurfaces

• Marschner and Lobb (‘94)
• Lin and Ching (‘96)

28

Feature ComparisonFeature Comparison

Ray Tracing
• Implicit geometry
• Software shading

Marching Cubes
• Explicit geometry
• Hardware shading

ShadowsShadows

without with

29

Performance ComparisonPerformance Comparison

Ray Tracing
• Run time

proportional to
image size

• Highly scalable

Marching Cubes
• Run time

proportional to data
size

• Leverages
conventional
graphics hardware

30

How Fast is Ray Tracing?How Fast is Ray Tracing?

• A single R10000 (195 Mhz)
• 512 x 512 image
• 512 x 512 x 1734 voxels (900 Megabytes)

Visible Female data from the National Library
of Medicine Visible Human Project

• Times vary from 22 to 418 seconds per
frame

OptimizationsOptimizations

• Parallelism
• Hierarchical data representation
• Data layout for better locality

31

Parallel ImplementationParallel Implementation

• Implemented on SGI Origin 2000
ccNUMA architecture - up to 128
processors

• Approximately linear speedup

• Load balancing and memory coherence
are keys to performance

Hierarchical Data Hierarchical Data
RepresentationRepresentation

• Skip over cells which do not contain an
isosurface - Wilhelms and van Gelder
(‘90)

• Keep “macrocells” which contain the
min/max values for contained cells

32

Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray

33

Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray

34

Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray

35

Two Level RepresentationTwo Level Representation

ray

ray

Two Level RepresentationTwo Level Representation

ray

ray

36

Number of Hierarchy LevelsNumber of Hierarchy Levels

• Traversal from cell to cell is cheaper
than moving up and down levels

• Would like to skip large empty regions
• We use 3 or 4 levels in practice

Data Layout (Bricking)Data Layout (Bricking)

• Optimizing for memory locality
• Two levels (bricks and metabricks)

• Common trick (e.g. Cox and Ellsworth
‘97)

37

1 2 3 10 11 12

4 5 6 13 14 15

7 8 9 16 17 18

144... 153...

Brick Metabrick

Data Layout (Bricking)Data Layout (Bricking)

• Brick sizes (Cache line and page sized
cubes)
– 16 bit data:
– 32 bit data: bricks3ofmetabricks6 33

bricks4ofmetabricks5 33

38

Combining Hierarchy and Combining Hierarchy and
BrickingBricking

• Requirements of hierarchy are different
than the brick sizes

• Traversal at finest level of hierarchy can
cross brick boundaries

• Must compute indices into bricked array

IndexingIndexing

• Consider 6x6x6 bricks of 3x3x3 bricks:
index = (x/3/6)*6*6*6*3*3*3*ny*nz +
(y/3/6)*6*6*6*3*3*3*nz +
(z/3/6)*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3
+ (y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 +
(x%3)*3*3 + (y%3)*3 + (z%3)

• Very expensive
– Integer division and modulus

39

What about that function?What about that function?

index = (x/3/6)*6*6*6*3*3*3*ny*nz +
(y/3/6)*6*6*6*3*3*3*nz +
(z/3/6)*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3
+ (y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 +
(x%3)*3*3 + (y%3)*3 + (z%3)

index = fx(x) + fy(y) + fz(z)

Efficiency of Data AccessEfficiency of Data Access

For isosurfacing, lookup 6 index values
for 8 data value lookups (instead of 24)

L1 cache hits: 99.44%
L2 cache hits: 97.6%
Memory bandwidth: 2.1 MB/sec/processor

40

Optimization ResultsOptimization Results

View Initial Bricking Hierarchy
+ Bricking

Skin: front 22.4 20.8 8.5
Bone: front 38.4 33.6 8.3
Bone: close 57.6 56.0 12.2
Bone: from feet 417.6 92.8 9.9

Times in seconds for a 512 x 512 image on 1 processor

Where time is spentWhere time is spent

Isosurface Traversal Intersection Shading
Skin 55% 22% 23%
Bone 66% 21% 13%

41

0

32

64

96

128

0 32 64 96 128
Processors

Sp
ee

du
p

Ideal
View 1
View 2

20.5 FPS
40 FPS

ResultsResults

• Gigabyte dataset (1734x512x512)
• 8-15 Frames per second on 64

processors
• Compare to Marching Cubes:

– bone isosurface: 9.9 million triangles
– skin isosurface: 6.7 million triangles

42

SummarySummary

• Useful tool for interactively exploring
large datasets on large machines

• Is complementary to marching cubes

• Attention to machine architecture critical
to performance

Future WorkFuture Work

• Application to unstructured data
• Frameless rendering
• Ray tracing for other types of scientific

data (streamlines, slices, others?)
• Time varying data (> main memory)
• Higher order interpolation methods
• Distributed implementation

43

Thanks to:
• Richard Coffey, SCI Group, SGI

Support
• Jamie Painter at the Advanced

Computing Laboratory, Los Alamos
National Laboratory

• DOE ASCI and AVTC
• NSF
• Utah State Centers of Excellence
• SGI Visual Supercomputing Center

